A Comparison Theorem for Solutions of Stochastic Differential Equations and Its Applications

نویسنده

  • HUANG ZHIYUAN
چکیده

A new kind of comparison theorem in which an SDE is compared with two deterministic ODEs is established by means of the generalized sample solutions of SDEs. Using this theorem, we can compare solutions of two SDEs with different diffusion coefficients and obtain some asymptotic estimations for the paths of diffusion processes. In the investigation of solutions of stochastic differential equations (SDEs), comparison theorems are very powerful tools as in the case for deterministic ones. But so far most of these theorems have dealt with those SDEs with the same diffusion coefficient (cf. [1, 3—7, 9, 10]) except in [8] where a very special case involving two different diffusion coefficients has been discussed (cf. Example 2). In this paper, we use the method of generalized sample solutions of SDEs (cf. [5, 11]) to establish a new kind of comparison theorem in which an SDE is compared with two deterministic ODEs. The conditions imposed here are weaker than those in [5 and 6] and the proof is much simpler. On the other hand, a discontinuous right-hand side is allowed. So it seems more appropriate to the stochastic optimal control problems. We begin with a lemma. LEMMA. Assume that two functions f{t,x) and f(t,x) are defined on some domain G in R2 satisfying the Carathéodory conditions, that is, they are measurable in t, continuous in x and dominated by a locally integrable function m(t) in the domain G. Let (ín,xo) an(^ (*o,¿o) be two points in G such that xq < xq, x{t) be any solution to the initial value problem (1) xt = f{t,xt), x{t0) = x0 and x(t) be the maximal solution to the problem tn\ ■ tit \ 14. \ (2) Xt=f{t,Xt), X{t0) = X0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random differential inequalities and comparison principles for nonlinear hybrid random differential equations

 In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities  have been proved for an IVP of first order hybrid  random differential equations with the linear perturbation of second type. A comparison theorem is proved and  applied to prove the uniqueness of random solution for the considered perturbed random differential eq...

متن کامل

Study on efficiency of the Adomian decomposition method for stochastic differential equations

Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved.  Uniqueness and converg...

متن کامل

Stochastic differential equations and integrating factor

The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010